RUANGAN PASIEN VIP PINTAR DI RUMAH SAKIT
a. Mengetahui cara menggunakan encoder decoder
b. Mengetahui cara menggunakan mux demux
c. Mengetahui cara kerja rangkaian aplikasi
1. Power Suply
2. Voltmeter DC
Bahan:
1. Resistor
Data sheet resistor:
2. Diode
3.Transistor(BC547)
Spesifikasi Transistor:
1. DC Current gain(hfe) maksimal 800
2. Arus Collector kontinu(Ic) 100mA
3. Tegangan Base-Emitter(Vbe) 6V
4. Arus Base(Ib) maksimal 5mA
Data Sheet Transistor
Grafik Respon:
4. 7 Segment common katoda
Spesifikasi
- Available in two modes Common Cathode (CC) and Common Anode (CA)
- Available in many different sizes like 9.14mm,14.20mm,20.40mm,38.10mm,57.0mm and 100mm (Commonly used/available size is 14.20mm)
- Available colours: White, Blue, Red, Yellow and Green (Res is commonly used)
- Low current operation
- Better, brighter and larger display than conventional LCD displays.
- Current consumption : 30mA / segment
- Peak current : 70mA
5. Sensor LM35
Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:
1. Catu daya pemanas : 5V AC/DC
2. Catu daya rangkaian : 5VDC
3. Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 - 20000ppm untuk methane 300 - 5000ppm untuk Hidrogen
4. Keluaran : analog (perubahan tegangan)
1. Pin 1 merupakan heater internal yang terhubung dengan ground.
2. Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.
3. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.
4. Pin 4 merupakan output yang akan menghasilkan tegangan analog.
Sensor ini dapat mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan keluarannya berupa tegangan analog. Sensor dapat mengukur konsentrasi gas mudah terbakar dari 300 sampai 10.000 sensor ppm. Dapat beroperasi pada suhu dari -20°C sampai 50°C dan mengkonsumsi arus kurang dari 150 mA pada 5V.
8. Touch sensor
Konfigurasi pin:
Spesifikasi sensor touch:
grafik sensor sentuh
9.Relay
Konfigurasi pin relay:
Spesifikasi Relay:
10. Motor DC
Grafik Motor DC:
Spesifikasi item:
o Tanpa kecepatan beban 12000 ± 15% rpm
o Tidak ada arus beban =280mA
o Tegangan operasi 1.5 - 9 VDC
o Mulai Torsi =250g.cm (menurut blade yang dikembangkan sendiri)
o mulai saat ini =5A
o Resistansi Isolasi di atas 10O antara casing dan terminal DV 100V
o Arah Rotasi CW: Terminal [+] terhubung ke catu daya positif, terminal [-] terhubung ke nagative
o daya, searah jarum jam dianggap oleh arah poros keluaran
o celah poros 0,05-0,35mm
11. IC Op Amp
13. Sensor flame
Spesifikasi dari flame detector ini adalah sebagai berikut:
1. Keluaran = Digital (D0)
2. Output Digital: 0 dan 1
3. Tegangan operasi: 3.3V hingga 5V
4. Format keluaran: Output digital (TINGGI / RENDAH)
5. Rentang deteksi panjang gelombang: 760nm hingga 1100nm
6. Menggunakan komparator LM393
7. Sudut deteksi: sekitar 60 derajat
8. Sensitivitas yang dapat disesuaikan melalui potensiometer
9. Arus Keluaran Maksimum: 15 mA
10. Indikator lampu LED: daya (merah) dan output switching digital (hijau)
11. Api yang lebih ringan mendeteksi jarak 80cm
Konfigurasi pin:
Modul sensor api ini memiliki 4 kaki/pinout dengan konfigurasi :
1. Vcc (5V)
2. Gnd
3. AO (Analog Input).
4. Digital Output (DO).
14. Gerbang Inverter/not
Spesifikasi IC inverter yang dijual dipasaran:
Adapan IC inverter gerbang logika NOT yang tersedia yaitu :
TTL Logic NOT Gates
74LS04 Hex Inverting NOT Gate
74LS14 Hex Schmitt Inverting NOT Gate
74LS1004 Hex Inverting Drivers
CMOS Logic NOT Gates
CD4009 Hex Inverting NOT Gate
CD4069 Hex Inverting NOT Gate
DataSheet IC 74HC05
15. IC 4556
Datasheet IC 4556
16. Encoder IC 74147
1.Resistor
Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.
Cara membaca nilai resistor
Cara menghitung nilai resistansi resistor dengan gelang warna :
1. Masukan angka langsung dari kode warna gelang pertama.
2. Masukan angka langsung dari kode warna gelang kedua.
3. Masukan angka langsung dari kode warna gelang ketiga.
4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n).
5. Gelang terakhir merupakan nilai toleransi dari resistor
2. Diode
Cara Kerja Dioda:
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
a. tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p.
b. kondisi forward bias
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.
c. kondisi reverse bias
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.
3. Transistor
Transistor NPN
Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.
Transistor PNP
Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.
Transistor sebagai saklar
Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;
Rb = Vbe / Ib
Transistor sebagai penguat
Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.
DC Current Gain = Collector Current (Ic) / Base Current (Ib)
4. Gerbang Logika AND (IC 7408)
Gerbang AND atau disebut juga "AND GATE" adalah jenis gerbang logika yang memiliki dua input (Masukan) dan satu output (keluaran). Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang AND berikut.
Pada gerbang logika AND, simbol yang menandakan operasi gerbang logika AND adalah tanda titik (.) atau bisa juga dengan tanpa tanda titik, contohnya seperti Z = X.Y atau Z = XY.
Perhatikan tabel kebenaran gerbang AND. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang AND akan menghasilkan output (keluaran) logika 1 bila semua variabel input (masukan) bernilai logika 1" sebalikanya "Gerbang AND akan menghasilkan keluaran logika 0 bila salah satu masukannya merupakan logika 0"
Jenis Gerbang Logika AND
Adapun gerbang logika AND terdiri dari gerbang logika AND 2 input dan 3 input. Untuk memperjelas silahkan perhatikan gambar berikut.
Berdasarkan ekspresi Boolean untuk fungsi logika AND didefinisikan sebagai (.) yang mana merupakan operasi bilangan biner, sehingga gerbang AND dapat diturunkan secara bersama-sama untuk membentuk sejumlah input.
Tetapi mengingat bahwa IC gerbang AND yang tersedia dipasaran hanya terdiri dari input 2, 3, atau 4. maka diperlukan input tambahan , sehingga gerbang AND standar perlu diturunkan bersama sehingga mendapatkan nilai input yang diperlukan, sebagai contoh
Gerbang AND Multi Input
Berdasarkan Gerbang AND 6 input diatas maka ekspresi Boolean yaitu :
Q = (A.B).(C.D).(E.F)
5. PIR sensor
Cara Kerja Sensor PIR
Sensor PIR bekerja dengan cara menangkap pancaran infra red, kemudian pancaran infra red yang tertangkap akan masuk melalui lensa Fresnel dan mengenai sensor pyroelektrik, sinar infra red mengandung energi panas yang dapat membuat sensor pyroelektrik menghasilkan arus listrik. Arus listrik inilah yang akan menimbulkan tegangan dan dibaca secara analog oleh sensor. Kemudian komparator akan membandingkan sinyal yang sudah diterima dengan tegangan referensi tertentu berupa keluaran sinyal 1-bit. Sensor PIR hanya akan mengeluarkan logika 0 dan 1. Logika 0 saat sensor tidak mendeteksi adanya perubahan pancaran infra red dan 1 saat sensor mendeteksi infra red. Sensor PIR hanya dapat mendeteksi pancaran infra red dengan panjang gelombang 8-14 mikrometer. Manusia memiliki suhu badan yang dapat menghasilkan pancaran infra red dengan panjang gelombang antara 9-10 mikrometer. Panjang gelombang tersebut dapat terdeteksi oleh sensor PIR sehingga membuat sensor ini sangat efektif digunakan sebagai human detektor. Sensor PIR hanya akan mendeteksi jika objek bergerak atau secara teknis saat terjadi adanya perubahan pancaran infra red.
Jarak Pancar Sensor PIR
Pada umumnya sensor PIR memiliki jangkauan pembacaan yang efektif hingga 5 meter. Namun, sensor PIR memiliki jangkauan jarak dan sudut pembacaan yang bervariasi, tergantung karakteristik sensor.
Bagian - bagian Sensor PIR
1. Pengatur waktu jeda, digunakan untuk mengatur lama pulsa high setelah gerakan terdeteksi dan gerakan telah berakhir.
2. Pengatur sensitivitas, sebagai pengatur tingkat sensitivitas sensor PIR.
3. Regulator 3V DC, sebagai penstabil tegangan menjadi 3V DC.
4. Dioda pengaman, berguna untuk mengamankan sensor jika terjadi salah pengkabelan VCC dengan GND.
5. DC power, berfungsi sebagai input tegangan dengan range (3 – 12)V DC.
6. Output digital, berfungsi sebagai output digital sensor.
7. Ground, dihubungkan dengan GND.
8. BISS0001, sebagai IC sensor PIR.
9. Pengatur jumper, digunakan untuk mengatur output dari pin digital.
Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika DasarJK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop
Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
6. Logic State
status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.
7. Sensor MQ 2
Sensor MQ-2 adalah sensor yang digunakann untuk mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan output membaca sebagai tegangan analog. Sensor gas asap MQ-2 dapat langsung diatur sensitifitasnya dengan memutar trimpotnya. Sensor ini biasa digunakan untuk mendeteksi kebocoran gas baik di rumah maupun di industri. Gas yang dapat dideteksi diantaranya : LPG, i-butane, propane, methane , alcohol, Hydrogen, smoke.
Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:
·Tegangan Operasi + 5V
. Dapat digunakan untuk mengukur atau mendeteksi LPG, Alkohol, Propana, Hidrogen, CO dan bahkan metana
·Tegangan keluaran analog 0V hingga 5V
·Tegangan keluaran digital 0V atau 5V (TTL Logic)
·Durasi pemanasan awal 20 detik
·Dapat digunakan sebagai sensor digital atau analog
·Sensitivitas pin digital dapat divariasikan menggunakan potensiometer
8. Sensor touch
Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
Sensor Sentuh Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor Sentuh Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
Grafik Respon Sensor Touch:
9. Relay
Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.
Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali. Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet. Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal. Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik. Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.
Fitur:
1. Tegangan pemicu (tegangan kumparan) 5V
2. Arus pemicu 70mA
3. Beban maksimum AC 10A @ 250 / 125V
4. Maksimum baban DC 10A @ 30 / 28V
5. Switching maksimum
10. Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
11. IC OP AMP
Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.
b. Inverting dan non inverting amplifier
Op-Amp memiliki beberapa karakteristik, diantaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
Grafik input dan output op amp |
Spesifikasi battery : 12 V
Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel. Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja. Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.
13. Sensor Flame (sensor api)
Flame detector dapat mendeteksi hal tersebut dikarenakan oleh komponen-komponen pendukung dari flame detector. Sensor nyala api ini mempunyai sudut pembacaan sebesar 60 derajat, dan beroperasi normal pada suhu 25 – 85 derajat Celcius. Adapun unit flame detector dapat dilihat pada gambar dibawah ini:
1. Pin1 (pin VCC): Suplai tegangan dari 3.3V ke 5.3V
2. Pin2 (GND): Ini adalah pin ground
3. Pin3 (AOUT): Ini adalah pin keluaran analog (MCU.IO)
4. Pin4 (DOUT): Ini adalah pin keluaran digital (MCU.IO)
Spesifikasi
1. Keluaran = Digital (D0)
2. Output Digital: 0 dan 1
3. Tegangan operasi: 3.3V hingga 5V
4. Format keluaran: Output digital (TINGGI / RENDAH)
5. Rentang deteksi panjang gelombang: 760nm hingga 1100nm
6. Menggunakan komparator LM393
7. Sudut deteksi: sekitar 60 derajat
8. Sensitivitas yang dapat disesuaikan melalui potensiometer
9. Arus Keluaran Maksimum: 15 mA
10. Indikator lampu LED: daya (merah) dan output switching digital (hijau)
11. Api yang lebih ringan mendeteksi jarak 80cm
Pada sensor ini menggunakan tranduser yang berupa infrared (IR) sebagai sensing sensor. Tranduser ini digunakan untuk mendeteksi akan penyerapan cahaya pada panjang gelombang tertentu, yang memungkinkan alat ini untuk membedakan antara spectrum cahaya pada api dengan spectrum cahaya lainnya seperti spectrum cahaya lampu, kilatan petir, welding arc, metal grinding, hot turbine, reactor, dan masih banyak lagi.
Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.
Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.
Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1Konfigurasi Pin Dan Tabel Kebenaran Encoder 74147
Read more at: https://elektronika-dasar.web.id/encoder-10-line-desimal-ke-bcd-74147/
Copyright © Elektronika Dasar
Rangkaian gerbang logika pada encoder 74147
Secara prinsip sensor akan melakukan penginderaan pada saat perubahan suhu setiap suhu 1 ºC akan menunjukan tegangan sebesar 10 mV. Pada penempatannya LM35 dapat ditempelkan dengan perekat atau dapat pula disemen pada permukaan akan tetapi suhunya akan sedikit berkurang sekitar 0,01 ºC karena terserap pada suhu permukaan tersebut. Dengan cara seperti ini diharapkan selisih antara suhu udara dan suhu permukaan dapat dideteksi oleh sensor LM35 sama dengan suhu disekitarnya, jika suhu udara disekitarnya jauh lebih tinggi atau jauh lebih rendah dari suhu permukaan, maka LM35 berada pada suhu permukaan dan suhu udara disekitarnya .
Jarak yang jauh diperlukan penghubung yang tidak terpengaruh oleh interferensi dari luar, dengan demikian digunakan kabel selubung yang ditanahkan sehingga dapat bertindak sebagai suatu antenna penerima dan simpangan didalamnya, juga dapat bertindak sebagai perata arus yang mengkoreksi pada kasus yang sedemikian, dengan mengunakan metode bypass kapasitor dari Vin untuk ditanahkan. Berikut ini adalah karakteristik dari sensor LM35:
- Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
- Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC
- Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
- Bekerja pada tegangan 4 sampai 30 volt.
- Memiliki arus rendah yaitu kurang dari 60 µA.
- Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
- Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
- Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.
Sensor suhu LM35 memiliki karakteristik sebagai berikut.
- Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam Celsius.
- Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC seperti terlihat pada gambar 2.2.
- Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
- Bekerja pada tegangan 4 sampai 30 volt.
- Memiliki arus rendah yaitu kurang dari 60 µA.
- Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
- Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
- Memiliki kesalahan hanya sekitar ± ¼ ºC.
- Menggunakan sensor SW-420 normally closed
- Sinyal output comparator bersih, bergelombang bagus dan mampu menghantar lebih dari 15mA
- Tegangan kerja 3.3V - 5V
- Format output: 0 dan 1 (digital, rendah dan tinggi)
- Dilengkapi lubang baut untuk instalasi
- Papan PCB kecil berukuran 3.2cm x 1.4cm
- Memakai comparator LM393
- Jalur input data BCD, pin input ini terdiri dari 4 line input yang mewakili 4 bit data BCD dengan sebutan jalur input A, B, C dan D
- Jalur ouput 7 segmen, pin output ini berfungsi untuk mendistribusikan data pengkodean ke penampil 7 segmen. Pin output dekoder BCD ke 7 segmen ini ada 7 pin yang masing-masing diberi nama a, b, c, d, e, f dan g
- Jalur LT (Lamp Test) yang berfunsi untuk menyalakan semua led pada penampil 7 segmen, jalur LT akan aktif pad saat diberikan logika LOW pad jalut LT tersebut
- Jalur RBI (Riple Blanking Input) yang berfungsi untuk menahan sinyal input (disable input), jalur RBI akan aktif bila diberikan logika LOW
- Jalur RBO (Riple blanking Output) yang berfungsi untuk menahan data output ke penampil 7 segmen (disable output), jalur RBO ini akan aktif pada sat diberikan logika LOW
prinsip kerja rangkaian ini adalah untuk menampilkan angka angka desimal kedalam display, dalam aplikasi decoder, ketiga jalur kontrol (LT, RBI, dan RBO) harus diberikan logika high dengan tujuan data input BCD dapat masukan dan penampilan 7 segmen dapat menerima data tampilan sesuai data BCD yang diberikan pada jalur inpu
Read more at: http://elektronika-dasar.web.id/teori-elektronika/dekoder-ttl-bcd-ke-7-segment/
Copyright © Elektronika Dasar
4. Percobaan [Kembali]
2. Disarankan agar membaca datasheet setiap komponen
3. Cari komponen yang diperlukan di library proteus
4. Rangkailah Rangkaian sesuai dengan gambar dibawah
5. jika ingin mensimulasikan jangan lupa masukkan library sensor
6. Jalankan rangkaian
b. Gambar rangkaian
- IC 4556 (demux dual 1of4) dan IC 74147 (encoder 10 to 4) :
Saat touch sensor berlogika 1 maka arus mengalir ke pin A demux 4556 sehingga pin tersebut berlogika 1, output yang dihasilkan dari demux tersebut saat pin A berlogika 1 yaitu Q0=1, Q1=0, Q2=1, dan Q3=1. masing masing Q1, Q2, Q3 terhubung ke input 1, 2, 3 pada encoder 74147. Sehingga output pada encoder yaitu Q0=0, Q1=1. Q2=1. Q3=1. Pin out yang terhubung hanya pin output Q0 dan Q1. Q0 terhubung ke rangkaian pengaktif motor pompa hand sanitizer. Berdasarkan input tadi, maka akan ada tegangan pada kaki base transistor sebesar 0.78 V, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 5V, arus mengalir dari Vcc ke kaki collector kemudian ke kaki emiter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke motor, sehingga motor pompa handsanitizer aktif kemudian ke kutub negatif baterai.
Saat PIR sensor yang terletak pada pintu masuk berlogika 1 maka arus mengalir ke pin B demux 4556 sehingga pin tersebut berlogika 1, output yang dihasilkan dari demux tersebut saat pin B berlogika 1 yaitu Q0=1, Q1=1, Q2=0, dan Q3=1. masing masing Q1, Q2, Q3 terhubung ke input 1, 2, 3 pada encoder 74147. Sehingga output pada encoder yaitu Q0=1, Q1=0. Q2=1. Q3=1. Pin out yang terhubung hanya pin output Q0 dan Q1. Q1 terhubung ke rangkaian pengaktif motor pembuka pintu masuk otomatis, dan ke suara pengingat untuk mencuci tangan dengan handsanitizer. Berdasarkan input tadi, maka akan ada tegangan pada transistor sebesar 0.78 V, sehingga mengaktifkan transistor.Tegangan dari Vcc aktif sebesar 5V. Arus mengalir dari Vcc ke kaki collector kemudian ke kaki emitter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke motor, sehingga motor pembuka pintu aktif kemudian ke arus mengalir ke sounder secara paralel, lalu ke kutub negatif baterai.
- IC 74192 (BCD counter synchronous) dan IC 7448 (decoder)
Terdapat dua buah sensor pir yang terhubung ke ic 74192, terletak pada luar pintu masuk yang dihubungkan ke input UP, dan satu lagi di dalam ruangan dekat pintu keluar yang dihubungkan ke input DN. Berikut timing diagram IC 74192
IC 74192 terhubung ke decoder IC 7448 yang kemudian output IC 7448 tersebut terhubung ke seven segment common katoda untuk menampilkan berapa banyak orang yang ada dalam ruangan tersebut.
- Sensor suhu LM 35
Ketika suhu di ruangan besar dari 27 derajat celcius, maka tegangan yang keluar dengan menggunakan sensor LM35, sebesar dari +0.27 V. Dengan menggunakan rangkaian detektor inverting dengan Vref nya +0.27 V, maka dengan menggunakan rumus Vo = (Vi - Vref) Aol, didapatkan tegangan sebesar +0.77 V pada kaki base setelah melewati resistor sebesar 1k . Maka akan ada tegangan pada kaki base transistor sebesar 0.78 V, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 5V. Arus mengalir dari Vcc ke kaki collector kemudian ke kaki emitter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke motor, sehingga motor untuk menghidupkan AC aktif kemudian ke arus mengalir ke sounder secara paralel, lalu ke kutub negatif baterai.
- IC 4556 (demux) :
Saat gas sensor berlogika 1 maka arus mengalir ke pin A demux 4556 sehingga pin tersebut berlogika 1, output yang dihasilkan dari demux tersebut saat pin A berlogika 1 yaitu Q0=1, Q1=0, Q2=1, dan Q3=1. Output Q1 terhubung ke rangkaian pengaktif motor penghisap asap. Berdasarkan input tadi, maka akan ada tegangan pada kaki base transistor sebesar 0.78 V setelah melewati resistor 10k, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 9V, arus mengalir dari Vcc ke kaki collector kemudian ke kaki emiter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke motor, sehingga motor penghisap asap aktif kemudian ke LED secara paralel, kemudian ke buzzer secara parallel, kemudian ke kutub negatif baterai.
Saat flame sensor berlogika 1 maka arus mengalir ke pin B demux 4556 sehingga pin tersebut berlogika 1, output yang dihasilkan dari demux tersebut saat pin B berlogika 1 yaitu Q0=1, Q1=1, Q2=0, dan Q3=1. Berdasarkan input tadi, maka arus mengalir dari pin Q3 ke gerbang not kemudian ke resistor kemudian ke transistor. Tegangan pada kaki base akan ada tegangan pada kaki base transistor sebesar 0.79 V, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 9V, arus mengalir dari Vcc ke relay ke kaki collector kemudian ke kaki emiter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser double relay dari kiri ke kanan. untuk relay sebelah kanan, saat bergeser dari kiri ke kanan maka hal yang akan terjadi yaitu menonaktifkan kelistrikan ruangan, sedangkan untuk relay sebelah kiri saat berbeser dari kiri ke kanan, maka arus mengalir dari kutub positif baterai ke motor pemadam api, kemudian ke LED secara paralel, kemudian ke kutub negatif baterai. Saat transistor tidak aktif, maka relay bergesar dari kiri ke kanan, sehingga akan mengaktifkan kelistrikan ruangan, arus mengalir dari sumber tegangan ke lampu ruangan secara paralel.
- Sensor getaran SW 420
Ketika sensor mendeteksi getaran, maka sensor akan berlogika 1 sehingga menghasilkan tegangan sebeasr 5V. Arus mengalir dari pin out ke resistor 10k kemudian ke ke kaki base transistor, tegangan terukur pada kaki base transistor yaitu +0.78V, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 9V. Arus mengalir dari Vcc ke kaki collector kemudian ke kaki emitter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke LED, kemudian ke buzzer secara paralel lalu ke kutub negatif baterai.
Tidak ada komentar:
Posting Komentar